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In this paper we address the following question: when can one represent the
input-output mapping of an infinite dimensional dynamical system correspond-
iNg to a physiologically structured population model by means of a finite dimen-
sional system of ordinary differential equations”? We concentrate in particular
on sufficient conditions in terms of the individual growth- and deathrates.

Note. This paper is dedicated to H.A. Lauwerier on the occasion of his 65th
bithday and in appreciation of all the methods, techniques and tricks we
learned from him.

Suppose we want to model a population of ectothermic invertebrates, e.g. the
water flea Daphnia magna. Experimentally it appears that reproduction
depends on the size of the individual amimals and this observation moti
K 001 odel. In Metz &

Kooyyman & Metz [5] to mmtroduce a size structured n
mann [7, [.3] the assumptions underlying the model are described in some
m rmulation:

—a%-n (¢,0)+ -g—i(v (s,)n(2,0)) = —wu(s,Hn (1),

L (1.1)
v(s,in(th) = [ B(s,Dn(t,1)dl.
by

Here / denotes length and s substrate (more precisely: concentration of algae).
[he individual growth, death and reproduction rates are denoted by v,u and B,
respectively. The density n describes the number of Daphnia as well as their
distribution with respect to length. All individuals are born with length /,, and
I max 1S the maximal attainable length under abundant food conditions.

To describe some experiments one should consider s as a given function of
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time, but to describe others one has to specify the dynamics of s as well. In th
latter case we take

ds _ -
— = hs)= If y(s,Dn (¢,Ddl, (1.2)

where h corresponds to the rate of change of the algae concentration in the
absence of daphnids and y 1s the per capita consumptlon rate. Under
appropriate assumptions on the B,y and A, (1. 1) and (1.2)
together generate an infinite dim al nonlinear d

Since daphmds are ﬁlter fwders it 1s reasonab
sumption rate y 1s proportional to the surface a
tional to /2. So we put

Y(s, D) = f ()

If a constant fraction of the in
put

B(S l) = af (5)/°

reproduce if they are stil Diekmann
lation which does tak to accoum a juvenile penod aractenzed by / <l )
the rest of the ingested energy is allotted to individual growt and mainte-

nance and if maintenance is propomon al to weight, which 1n turn 1s propor-
tional to /°, we may take

d
dt

and therefore

L3 = 38f (s)I — 3¢/’

v (s,]) = ;‘;1 = 8f(s)—el (1.5)

Finally we take
u(s,/) = u, a constant. (1.6)

We now introduce
! ax
Ni(t) = j In(t,hdl, i = 0,1,2 (1.7)

and find, using (1. 1) (1.7) and some straightforward integrations (by parts),
that (N,s) satisfies the closed system of ordinary differential equations



dN
dto af (s)Ny—

dN

—— = baf ()N, —8f (5)No—

dN
dt

?}“ = h(s)=f ()N

I

|

= l%af(s)Nz +20f ()N —

lynamical systems can
m a n uimu de Of

rv of the food j
development lag (see M

2. INTRODUCTION: RAL MODELS AND TRACTABLE SPECIAL CASES
Every painter needs technical tools to maternalize the views he has in mind.
Likewise, to pmcnse the art modellin g natural phenomena one needs
and tricks. This paper ES about a coherent collection of
ensmnal ones. In pa.rtlcular the paper concentrates on the applicabil ty of
such tricks in the context of physiologically structured population models
Before embarking upon the mathematical aspects, we want to make some
remarks about modelling in general in order to bring the underlying ideas n
perspective. First of all, the structured p()pulation methodology provides a
framework for strategic modellin g By this we mean the building of master
models which, except in those parts represemmg the specific mechanistic
feature about which we wish to obtain information and understanding, are as
general as possible. Within such a framework we can try to prove general
theorems and develop general concepts.

If we are lucky, the specific mechanism under investigation, by 1ts very
nature, allows some sort of model reduction (an example 1s provided by the
use of an equivalent ‘age’ (:= time elapsed since infection) representation in
the Kermack-McKendrick epidemic model, Metz & Diekmann [7, 1V.4.1]) and
completely general assertions can rigorously be shown to be valid. Usually,
however, it 1s very difficult, if not impossible, to obtain such strong results. In
that case we may start considering simplifications chosen for their mathemati-

cal convenience (these we may call tactic models with a strategic objective as
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d to tactic models with a concrete ob_]ectlve VIZ. diction and/ or test-

hope Seems especnally justified when the results
sttc mterpretatlon (an example 1s provided by the various cri-
ecifyin g the qua itative prop erttes of e btfurcatton diagram for the

_]‘VC nile penod taken 1
cial case described by U 3).
un  trick ery pro 1d des one

the I context of delay equa-

RMULATION OF PHYSIOLOGICALLY STRUCTURED POPULATION

which together we call the i-state. So the set of feasible i-states € is a nice sub-
set of R", for some n. At the individual level a model amounts to a
specification of (1) the rate of i-state change, (1) the deathrate, (i1) the
'u'thrate and m partmu]a;r how (1), (1) and (11) depend on the i-state and the

ailin [he latter are described by a, possibly
nfinite dim ariable E In the case of the birthrate we have to
speafy the (d smbutton of he) state at birth as well.

Once we have a model at the individual level we can immediately derive bal
ance laws doing the necessary bookk eepmg [hese balance laws generate the
time evolution at the population level. There are two types of balance laws,
related to each other by duality. The Kolmogorov backward equation is con-
cerned with the clan mean of a continuous function on . The Kolmogorov
forward equation describes infinitesimal changes in the measure which assigns
to every measurable subset of { the number of individuals which have at that
instant an i-state which belongs to the particular subset. This measure is called
the p-state (p for population) and the space M (2) of regular Borel measures on
{} is called the p-state space. Frequently (but not always) we can restrict our
attention to densities and formulate the Kolmogorov forward equation for
L,(Q).

We can use duality since for £ a given function of time, by assumption, the
equations are linear. Some environmental variables, like food, are in turn
influenced by the population, e.g. through consumption. Thus nonlinear prob-
lems come into being by allowing feedbacks through the environment.

Formally at least, the Kolmogorov forward equation can be written as

“Z’ — A(E)'n 3.1)

Quite 1n general we have a decomposition
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An opera-
&herefore has larger
an then replace

(4.6)

hall restrict our attention to mappings P of the form (4.4)
not go into the distinction between (4.5) and (4.6) (in fact we
the precise definition of domains of unbounded operators):.

ext assum .e at E 1s fins dimensional and that | eedb ack throu & h the
ient 1S INCO! _- by a

ENVITONIx allowing the equations for E to depend on
C (E } n, whwe C (E )y M(Q) into R™ for some m (one may call C(EY
the output m

family T(E) of kX m matrices exists such that

7



C(E) = T(E)P (4.7)

then C(E)'n = I'(E)Pn = I'(E)N and consequently a coupled finite dimen-
sional system for N and E describes the interaction completely. Once E 1s
determined by solving this reduced system, we can consider

dn
dr

as a non-autonomous (1.e. time-dependent) but linear equation. A special case
of particular importance arises if one can conclude from the (N, E)-system that
£ approaches a limit (or a periodic solution) as r—o0. In that case the linear
equation for n 1s asymptotically autonomous (periodic) and one can base
further conclusions on the known asymptotic behaviour for these special situa-
tions.

= A(E)'n (4.3)

ExAMPLE 1. Consider a cell population with size structure and assume that a
mother cell divides into two exactly equal daughter cells. Then the forward
equation for densities reads

an

(E xX) = mwé-;(g(x Eyn(t,x))— B(x,E)n(t,x)+4B12x,E)n(t, 2x) (4.9)

(see Heyymans [4], Metz & Diekmann [7, 1.4, VI.5] and the references given

there). Introducing the total biomass operator

X max

Py = [ xi(x)dx (4.10)

]
2 X

we note that

P(—=BC, EW()+4B(2,ENX(2) = 0
3(EY = 0.

since mass 1S conserved in the division process. In other words, P]
Assuming

g(x,E) = h(E)x

we get

PAy(E)Y

1

— [ X—— (h (E)xy(x))dx

1

.,

1

h(E) j xY(x)dx = h(E)Py

2 X

: I ..
(provided Y5 Xmin) = Y(Xmax) = 0). Combining these two observations we
have

PA(E)' = h(E)P.



F 1S one-

an obtain stronger results. The idea is that
down the zero’th genemﬂon 1.e. the solution of
dno/dt = Ay(E) ng, icitly and that ny tends to zero as r—oo (recall that
A 0 mCO [P orates on I-State chan ge a_nd de&t , NO bir th in fact the weaker
condition that B(E) ng(z)—0 as t—o0 1s sufficient for our purposes). So when-
ever B(E)" = A(E)P for some family of mappi —M ({)) one can
write down the solution n(z) explicitly in the form of a variation-of-constants
formula involvin % no(t) and N(t). M otivaied by this observation we first look

for P: M(2)->R"* and k Xk matrices H (F) such that
PAL(EY = H(E)P. (4.11)

If then, moreover, B B(E )* = AN(E)P and C(FE)" = I'(E)P the infinite dimen-
sional dynamical system 1s reduced to a ﬁmte dimensional one and, conversely,
one can recover the solution of the original system completely from the solu-
tion of the ODE system by using the (explicit) vanation-of-constants formula
for the growth-death part Ay(E)".

5. SUFFICIENT CONDITIONS FOR LINEAR CHAIN TRICKERY
Assume that the i-state space 1s one-dimensional. Then

(Ao(E)p)x) = v(x,E)P'(x)—mx, £)P(x) (5.1)

where v 1s the individual growthrate and p the per capita deathrate.

We first restrict ourselves to the case where P has one-dimensional range.
[he question then is: under which conditions on v and p can we find a (con-
tinuous) function ¢(x) and a function A(F) such that

v (X, E)'(x)—pmx, E)p(x) = ME)P(x) ? (5-2)

If we rewrite (5.2) in the form

wx, E)+NME) _ ¢(x) (5.3)
v(x,E) H(x) |




dition is that for some function

tion 1S Sin that u 1s the sum of a function of x (in
this context we prefer to call x a) and a function of E. Note that A is deter-
mined modulo additive constants only and that, as a consequence, we have a
arameter famil . This gives greater flexibility for satisfying the

EXAMPLE 3. Size-dependent population dynamics.

lf, for instance, p is independent of x we can choose ME) = —w(E) and
J(x) = 0, hence ¢(x) = 1, which sin means that N 1s total population.
[he conditions on B and C then require that the per capita contribution to the

birthrate as well as the per capita consumption rate are independent of x. O

As a second special case we don’t restrict the dimension of the range of P but
concentrate on age a as the i-state. Th

et us first tak

(5.4)

(5.5)

Substituting this expression into (5.4) we find

eigenVeCto r of H

or, 1n other words, ®(a) is an H(E)— H(E;) with corresponding
eigenvalue w(a,Eq)—wa,E). For fixed E, and E the eigenvalues form a
discrete set. On the other hand it is reasonable to assume that

aria,Eg)—wa,E) 1s continuous. But a continuous function taking values in
a discrete set is constant. So necessarily

[.L(G,E) — p(a,Eo)+)\(E), with A(Eo) = 0. (57)
Then we can simply take
H(E) = H(Ey)—NE)I (5.8)

and venify that (5.5) implies (5.4) when (5.7) and (5.8) hold. We conclude that
in the age-dependent case (5.7) is a necessary and sufficient condition for this
part of the linear chain trickery and that we still have a vector ®(0) and a

matrix H(E) at our disposal to satisfy the further conditions imposed by the
birth and output operators.

If we try to do the same thing for general one-dimensional i-state x, the
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V(X E)
""" 1) v(x,Eq) "

Y (0E) = a(EYf (o)

essential difference.

EXAMPLE 4. Once more, size-dependent population dyna 1CS.
wWe still assume Eh at p 1S 1ndep endent of x. We choo se k = 2 and
$1(x) = 1, ¢(x) = x. We want that, for some 2 X2 matrix H (E)

0 1 1] B hi(E)+thpa(E)x
=

POGE) || THE) | ha1(E)+hay(E)x|
ChOOSiIlg hlz(E) = 0 and h”(E) — }J(E) we have an identity for the first
component without any requirement for v. However, the second component
requires that v is of the form

v(x,E) = a(E)+b(E)x. (5.11)
We then choose h,1(E) = a(FE) and hp»(F) = b(F)—u(E). So

0 0
a(k) b(E)

N
o

H (E) (5.10)

H(E) = —ME)],

which 1s not of the form (5.8). L[]

Note that we can 1mu
sions by choosing

O(x) = (1,x ,“i"x DT

nediately extend the example to any number of dimen-

Moreover, one can employ an £ independent change of i-state variable to

bring a growthrate v 1n the form (5.11). For example, the growth laws most
commonly encountered in the hiterature

(1) von Bertalanfty: % = ay*> —fy,
(1) logistic: % = ay — By?,

(n) Gompertz: % = ay —PBylogy,

can all be linearized:

: d 1
) x=y"T= Z- = px)
dx

= —

1
y dt

B—ax,

i)  x
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(m) x = logy = ax = a— pXx,

dt

(we thank Y. Iwasa for bringing (1) an
Modulo such chan ges of z -state va abEe Examp

prion restrictions), which would 1m
not been successful.

In conclusion of this section we present one exam
sional i-state space. The analogue of (5.1) is

(Ao(E))x) = v(x,E).V(x)—mx, E

or, in words: v¢’ 1s replaced by the directional denivative 1n
vector field v.

(5.12)

the direction of the

LE 5. Consider two-dimensional x and let v be given by
a(E)+b(E)x,

vix,E) = ¢(E)

Define
®(x) = (L,.xl,,x%ﬂ,emkx",,xlca’m"'m2 x%e—kxz)T,

and
0 O 0
0 O 0
B 2b 0O 0
H(E) = —k 0

a

S O OoOR O
o o § oo

0
0 (b —kc)
O 0 0 O 2a 2b —kc

A straightforward calculation then shows that
v, E)Ve(x) = H(E)P(x)

which is the required relation for p = 0. When p is non-zero but still indepen-
dent of x we can redefine H(E) by subtracting —u(E)I.
The biological interest of this example is that we may interpret x, as size

and x, as pliysiological age. Moreover ® is chosen in such a way that we can
choose

B(x,E) = f(EX1—e )xi

as an age and size dependent birthrate of individuals.
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necessary and sufficient conditions for
ant for two reasons. First of all it should
in which a reduction to finite dimensions 1s
alogue will contain useful cases which thus far
F. models can be reinterpreted as reduced structured
pinion the justification of any

interpretation 1s possi-

ble)

ma  towards the derivation of necessary
and sufficient conditions, but we are still fai

However, we plan to keep on workin

m reaching our final goal.

boat mechanism. To appear nJ M
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